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Abstract

In this paper, based on Eulerian–Lagrangian localized adjoint method (ELLAM), we use biorthogonal spline

wavelets to develop numerical schemes for multidimensional advection–reaction equations. The derived schemes

produce accurate numerical solutions even if large time steps are used. These schemes are explicit but unconditionally

stable. They also have the ability to carry out adaptive compression while preserving the total mass. Numerical ex-

periments including observations on their convergence rates are presented to show the strong potential of these

methods.
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1. Introduction

Advection–reaction partial differential equations arise from petroleum reservoir simulation, ground-

water contaminant remediation, and many other applications. The solutions to these kinds of problems

usually have moving steep fronts and cause serious numerical difficulties. Standard numerical methods
produce either excessive nonphysical oscillations or extra numerical diffusion, which smears the steep

fronts. Therefore, many special numerical techniques have been developed to overcome these difficulties.

Among them, Eulerian–Lagrangian localized adjoint method (ELLAM) [2,14,20,21] is prominent. As a

time-stepping procedure, it produces very accurate numerical solutions even if large time steps are used.

ELLAM framework leaves many doors open in spatial aspects so finite element methods, finite volume
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methods, and other new methods can be applied to spatial grids. Moreover, all boundary conditions are

naturally incorporated into variational forms and mass is conserved.

In recent years, the localization capability and multilevel structure of wavelets have been utilized to
develop efficient numerical methods for elliptic problems and conservation laws [1,4,6,12,13]. For ad-

vection-dominated problems, the existence of moving sharp fluid interfaces between smooth structures is

a clear indication for application of wavelet techniques. In [22], we used orthogonal scaling functions

and wavelets as trial and test functions within ELLAM framework to develop explicit but uncondi-

tionally stable schemes for advection–reaction equations. In this paper, we continue this effort and

extend the ideas to biorthogonal spline wavelets. Spline functions will be used as trial functions to

approximate the solution and a family of numerical schemes will be developed. These include the single

level scheme using only scaling functions, the multilevel scheme using both scaling functions and
wavelets, and the adaptive multilevel scheme that can carry out mass-conservative compression. These

biorthogonal spline schemes possess some features of traditional finite element methods besides the

advantages of adaptivity.

We organize the rest of this paper as follows: In Section 2, the main ideas of ELLAM framework are

reviewed through the derivation of a reference equation for the initial value problem of multidimensional

advection–reaction equations. Then we outline the basic theory about multiresolution analyses (MRA),

orthogonal wavelets, and biorthogonal wavelets in Section 3. Section 4 is dedicated to the development of

explicit but unconditionally stable numerical schemes based on biorthogonal spline wavelets. Then in
Section 5 we present some numerical results and observe the convergence rates of these numerical schemes.

Finally in Section 6 we make some remarks and discussions.
2. An Eulerian–Lagrangian weak formulation

We consider the following initial value problem to linear advection–reaction equation in multidimen-

sional spaces:

ut þr � ðVuÞ þ Ru ¼ f ðx; tÞ; ðx; tÞ 2 Rd � ½0; T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 Rd ;

�
ð1Þ

where uðx; tÞ is the unknown concentration function, Vðx; tÞ represents a fluid velocity field, Rðx; tÞ is a first
order reaction coefficient, f ðx; tÞ is a source/sink term, and u0ðxÞ is a prescribed initial condition. We as-

sume that u0ðxÞ and f ðx; tÞ are compactly supported, hence so is the exact solution uðx; tÞ for any finite

time.

Let 0 ¼ t0 < t1 < � � � < tn�1 < tn < � � � < tN ¼ T be a partition of ½0; T � with Dtn :¼ tn � tn�1. We choose

the test function wðx; tÞ in such a way that it vanishes outside the space-time strip Rd � ðtn�1; tn� and is

discontinuous in time at time tn�1. Then integration by parts yields the following weak formulation [2,15,16]Z
Rd

uðx; tnÞwðx; tnÞdx�
Z tn

tn�1

Z
Rd
ðuðwt þ V � rw� RwÞÞðx; tÞdxdt

¼
Z
Rd

uðx; tn�1Þw x; tþn�1

� �
dxþ

Z tn

tn�1

Z
Rd

f ðx; tÞwðx; tÞdxdt; ð2Þ

where wðx; tþn�1Þ :¼ limt!tþ
n�1

wðx; tÞ takes into account the fact that wðx; tÞ is discontinuous in time at time

tn�1.

To develop an efficient numerical scheme reflecting the hyperbolic nature of the problem, we are mo-

tivated by the ideas of ELLAM [2] to eliminate the second term on the left side. This means the test function

should satisfy the following adjoint equation
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wt þ V � rw� Rw ¼ 0: ð3Þ

Note that the characteristic yðs; x; tÞ passing through ðx; tÞ is determined by the following initial value
problem of ordinary differential equation (ODE):

dy

ds ¼ Vðy; sÞ;
yðs; x; tÞjs¼t ¼ x:

�
ð4Þ

Along characteristics, the adjoint Eq. (3) becomes an ODE

d
ds wðyðs; x; tÞ; sÞ � Rðyðs; x; tÞ; sÞ wðyðs; x; tÞ; sÞ ¼ 0;
wðyðs;x; tÞ; sÞjs¼t ¼ wðx; tÞ:

�
ð5Þ

Solving the problem gives us the following expression for the test function

wðyðs; x; tÞ; sÞ ¼ wðx; tÞ e�
R t

s
Rðyðr;x;tÞ;rÞ dr

; s 2 ½tn�1; t�: ð6Þ

Therefore, once the test function wðx; tÞ is specified at time tn, it is completely determined in the space-

time strip Rd � ½tn�1; tn� with exponential decay/growth along characteristic yðs; x; tnÞ for s 2 ½tn�1; tn�. If
there is no reaction, then the test function is a constant on each characteristic.

Exact characteristic tracking is always preferred in numerical schemes whenever it is possible. Generally,

we employ the Runge–Kutta method to approximate characteristics and use the following approximate test

function instead:

wðyðs; x; tnÞ; sÞ ¼ wðx; tnÞe�Rðx;tnÞðtn�sÞ; x 2 Rd ; s 2 ½tn�1; tn�: ð7Þ

Next we utilize the above test function to approximate the second term (source term) on the right side of

the weak formulationZ tn

tn�1

Z
Rd

f ðy; sÞwðy; sÞdyds ¼
Z
Rd

Z tn

tn�1

f ðyðs; x; tnÞ; sÞ wðyðs; x; tnÞ; sÞ jJðyðs; x; tnÞ; xÞjdsdx

¼
Z
Rd

f ðx; tnÞwðx; tnÞ
Z tn

tn�1

e�Rðx;tnÞðtn�sÞ ds
� �

dxþ Eðf ;wÞ

¼
Z
Rd

Gðx; tnÞf ðx; tnÞwðx; tnÞdxþ Eðf ;wÞ; ð8Þ

where J is the Jacobian of y with respect to x,

Gðx; tnÞ :¼
Dtn if Rðx; tnÞ ¼ 0;
1�e�Rðx;tnÞDtn

Rðx;tnÞ if Rðx; tnÞ 6¼ 0;

�
ð9Þ

and the truncation error

Eðf ;wÞ :¼
Z
Rd

Z tn

tn�1

wðx; tnÞe�Rðx;tnÞðtn�sÞ ½f ðyðs; x; tnÞ; sÞjJðyðs; x; tnÞ; xÞj � f ðx; tnÞ�dsdx:

Substituting Eq. (8) into Eq. (2) and dropping the error term gives us a reference equationZ
uðx; tnÞwðx; tnÞdx ¼

Z
uðx; tn�1Þw x; tþn�1

� �
dxþ

Z
Gðx; tnÞf ðx; tnÞwðx; tnÞdx: ð10Þ
Rd Rd Rd
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3. Multiresolution analyses and wavelets

In Fourier analysis, L2-functions are represented as linear combinations of sines and cosines. In 1910,

Haar studied the representation of L2-functions by step functions taking values �1 [11]. In the 1980s and

1990s, these ideas were explored further and developed into the theory of wavelets. Multiresolution

analysis, as one of the most sophisticated ways of constructing wavelets, was introduced by Mallat from the

image processing field into mathematics [17]. Compactly supported wavelets with arbitrary regularity were

devised by Daubechies [8]. Wavelet analysis has proved to be an efficient tool in approximation theory and
for capturing local and transient phenomena [9,10,18,19].
3.1. Multiresolution analyses, scaling functions and orthogonal wavelets

An orthogonal wavelet is simply an L2-function wðxÞ with some oscillations and a zero averageR
R
wðxÞdx ¼ 0 such that its shifted dilates wj;kðxÞ :¼ 2j=2wð2jx� kÞ; j; k 2 Z form an orthonormal basis

(ONB) of L2ðRÞ. Loosely speaking, wavelets are small waves with rapid decay or compact supports, and

hence have good localization capability, whereas the sine and cosine used in Fourier analysis are harmonic
waves spreading over the whole real line and lack the aforementioned capability.

Usually orthogonal wavelets are connected with MRA. An MRA is a sequence of closed subspaces in

L2ðRÞ satisfying
(i) Vj � Vjþ1; 8j 2 Z,

T
j2Z Vj ¼ f0g,

S
j2Z Vj ¼ L2ðRÞ (completeness);

(ii) f ð�Þ 2 Vj () f ð2�j�Þ 2 V0, 8j 2 Z (dilation invariance);

(iii) f 2 V0 ) f ð� � kÞ 2 V0, 8k 2 Z (translation invariance);

(iv) 9/ 2 V0, called scaling function, so that f/0;k j k 2 Zg is an ONB of V0, where /j;kðxÞ :¼ 2j=2

/ð2jx� kÞ; j; k 2 Z.
By dilation invariance, f/j;k j k 2 Zg is also an ONB of Vj. Any f 2 L2ðRÞ can be approximated by its

orthogonal projection onto Vj

Pjf :¼
X
k2Z

hf ;/j;ki/j;k: ð11Þ

Then the completeness implies convergence limj!1 kPjf � f kL2 ¼ 0.
Let W0 be the orthogonal complement of V0 in V1, that is,

V1 ¼ V0 � W0; ð12Þ

then there exists an orthogonal wavelet wðxÞ such that fw0;k j k 2 Zg is an ONB of W0. Accordingly,

fwj;k j k 2 Zg is an ONB of Wj and

Vjþ1 ¼ Vj � Wj: ð13Þ

Let Qj : L2ðRÞ ! Wj be the orthogonal projection defined by

Qjf :¼
X
k2Z

hf ;wj;kiwj;k: ð14Þ

Then by Eq. (13), we have

Pjþ1f ¼ Pjf þ Qjf : ð15Þ

Obviously, Pjþ1f approximates f at a finer scale than Pjf does. In other words, Pjþ1f reveals more

details, which are represented by the wavelet terms in Qjf .
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Since / 2 V0 � V1 and f/1;k j k 2 Zg is an ONB of V1, there exists a sequence of numbers h ¼ hhnin2Z,
called filter, such that

/ ¼
X
n2Z

hn/1;n: ð16Þ

Similarly, from w 2 V0 � V1, we have another filter g ¼ hgnin2Z such that

w ¼
X
n2Z

gn/1;n: ð17Þ

A permissible choice is gn ¼ ð�1Þnh1�n.

From Eq. (16), we have

/j;kðxÞ ¼ 2j=2/ð2jx� kÞ ¼ 2j=2
X
n

hn/1;nð2jx� kÞ ¼
X
n

hn2ðjþ1Þ=2/ð2ð2jx� kÞ � nÞ

¼
X
n

hn2ðjþ1Þ=2/ð2jþ1x� ð2k þ nÞÞ:

Let l ¼ 2k þ n, then n ¼ l� 2k and we obtain

/j;kðxÞ ¼
X
l

hl�2k/jþ1;lðxÞ: ð18Þ

Similarly,

wj;kðxÞ ¼
X
l

gl�2k/jþ1;lðxÞ: ð19Þ

Let aj;k ¼ hf ;/j;ki and bj;k ¼ hf ;wj;ki, then Eqs. (18) and (19) lead us to the following decomposition

algorithm connecting coefficients of successive approximations:

aj;k ¼
X
l

hl�2k ajþ1;k; bj;k ¼
X
l

gl�2k ajþ1;k: ð20Þ

Moreover, Eqs. (18), (19) and orthogonality imply that h/j;l;/jþ1;ki ¼ hk�2l and hwj;l;/jþ1;ki ¼ gk�2l.

Then applying the definition of orthogonal projection and Eq. (15) gives the reconstruction algorithm

ajþ1;k ¼ hf ;/jþ1;ki ¼ hPjþ1f ;/jþ1;ki ¼ hPjf ;/jþ1;ki þ hQjf ;/jþ1;ki

¼
X
l

aj;lh/j;l;/jþ1;ki þ
X
l

bj;lhwj;l;/jþ1;ki ¼
X
l

hk�2laj;l þ
X
l

gk�2lbj;l: ð21Þ

Let Jc < Jf be the chosen coarsest and finest resolution levels, then applying Eqs. (13) and (15) recur-

sively yields

VJf ¼ VJc � WJc � � � � � WJf�1; ð22Þ

and

f �
X
k

hf ;/Jf ;ki/Jf ;k ¼
X
k

hf ;/Jc;ki/Jc;k þ
XJf�1

j¼Jc

X
k

hf ;wj;kiwj;k: ð23Þ

This motivates us to carry out a progressive/multilevel approximation. We first approximate the function
from a coarse level, and then add in more details level by level through wavelet terms if necessary. In
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addition, wavelet coefficients in the smooth regions of a function will be small and thus can be neglected to

save computations and storage. In other words, compression in the wavelet decomposition can be per-

formed to improve the efficiency of approximation.
The properties of the scaling function and wavelet used affect the performance of approximation in

various aspects. The lengths of their supports determine computational cost. The number of vanishing

moments of the wavelet implies compression potential. Given the number of vanishing moments,

Daubechies� wavelets [8] have the minimal support length. In this aspect, they are optimal and hence

popular in applications.

3.2. Biorthogonal wavelets

Biorthogonal wavelets were motivated by concerns about exact reconstruction and symmetry in signal

processing, and developed to improve the shortcomings of orthogonal wavelets while maintaining their

advantages [5]. Rather than one orthogonal wavelet and one orthogonal scaling function, two wavelets and

two scaling functions satisfying the so-called biorthogonal relation are constructed. One remarkable feature

is that, as we shall see later, the desired properties of vanishing moments and regularity are separated into

two biorthogonal wavelets, and this separation proves to be very useful for many applications.

Applications of biorthogonal wavelets in sciences and engineerings have gone beyond signal processing

or image processing. In numerical solutions for PDEs, they serve in an analogous capacity as Petrov–
Galerkin methods do for finite element methods.

Now we construct biorthogonal wavelets and scaling functions from two pairs of filters ðh; gÞ and ð~hh; ~ggÞ
through two-scale equations:

/ ¼
X
k2Z

hk/1;k; w ¼
X
k2Z

gk/1;k;
~// ¼

X
k2Z

~hhk ~//1;k;
~ww ¼

X
k2Z

~ggk ~//1;k: ð24Þ

The filters should satisfy the following condition

ĥhðxÞ ~̂hh~hhðxÞ þ ĥhðxþ pÞ ~̂hh~hhðxþ pÞ ¼ 2; ð25Þ

where ĥhðxÞ :¼
P

n2Z hne
�inx and similarly for ~̂hh~hhðxÞ. Again permissible choices for g and ~gg are

gn ¼ ð�1Þn~hh1�n; ~ggn ¼ ð�1Þnh1�n: ð26Þ

Usually /;w are called primal scaling function and wavelet, and ~//; ~ww are called dual scaling function and

wavelet. But the roles of these two pairs of filters are symmetric and can be switched. Hence the same is true
for the primals and duals.

Under certain conditions on the filters, fwj;k j j; k 2 Zg and f ~wwj;k j j; k 2 Zg form two Riesz bases of L2ðRÞ.
Namely, there exist two positive constants A and B such that for any f 2 L2ðRÞ,

Akf k2L2ðRÞ 6 khf ;wj;kik
2

2 6Bkf k2L2ðRÞ; ð27Þ
1

B
kf k2L2ðRÞ 6 khf ; ~wwj;kik

2
2 6

1

A
kf k2L2ðRÞ: ð28Þ

More important is the following biorthogonal relation:

h/0;k;
~//0;k0 i ¼ dk;k0 ; ð29Þ
hwj;k;
~wwj0;k0 i ¼ dj;j0dk;k0 : ð30Þ
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Let

Vj ¼ Spanf/j;kjk 2 Zg; Wj ¼ Spanfwj;kjk 2 Zg;
~VVj ¼ Spanf ~//j;k j k 2 Zg; ~WWj ¼ Spanf ~wwj;k j k 2 Zg: ð31Þ

Then the two sequences hVjij2Z and h ~VVjij2Z satisfy the first three conditions but not the fourth one in the

definition of MRA discussed in Section 3. Now f/0;k j k 2 Zg is not an ONB in general, but merely a Riesz

basis of V0. However, we still call hVjij2Z an MRA. The same is true for f ~//0;k j k 2 Zg and h ~VVjij2Z. It is not a
surprise that the following holds

Vjþ1 ¼ Vj þ Wj; ~VVjþ1 ¼ ~VVj þ ~WWj: ð32Þ

The biorthogonality implies that Wj is not necessarily orthogonal to Vj but is to ~VVj, whereas ~WWj is not

necessarily orthogonal to ~VVj but is to Vj. This way, the biorthogonality binds the two MRA into a giant
‘‘zipper’’ [9].

For any f 2 L2ðRÞ, there exist two representations

f ¼
X
j;k2Z

hf ; ~wwj;kiwj;k ¼
X
j;k2Z

hf ;wj;ki ~wwj;k: ð33Þ

Either way, one biorthogonal wavelet is used in decomposition (coefficients) while the other one is used

in reconstruction (basis functions). But we prefer the wavelet used for coefficients to have more vanishing

moments and the other one used for basis functions to have better regularity. In the smooth regions of the
function, the wavelet coefficients will be small and compression can be carried out. So more vanishing

moments mean a higher compression potential. On the other hand, when a smooth wavelet is used for

basis functions, the error added to the wavelet coefficients from compression or quantization will intro-

duce a smooth error in the approximation. Therefore, the desired properties of vanishing moments and

regularity are separated into two biorthogonal wavelets, and this separation proves to be useful for many

applications.

Finally, it is apparent from the nestedness of subspaces and biorthogonality that

Vj ? ~WWj0 ; ~VVj ? Wj0 ; for j6 j0:

Therefore, rather than using the infinite expansions in Eq. (33), one can choose a coarse resolution level
Jc and a fine level Jf ð> JcÞ to carry out one-level or multilevel approximations similar to the orthogonal

case

f �
X
k

hf ; ~//Jf ;ki/Jf ;k ¼
X
k

hf ; ~//Jc;ki/Jc;k þ
XJf�1

j¼Jc

X
k

hf ; ~wwj;kiwj;k: ð34Þ
3.3. Biorthogonal spline wavelets

Most orthogonal scaling functions and wavelets do not have explicit expressions, which is an obvious

shortcoming for their applications in some situations. In this sense, biorthogonal spline wavelets are ap-

pealing since the primal scaling function and wavelet are splines, and hence have explicit expressions and

known regularities. Therefore, numerical methods built upon biorthogonal spline wavelets possess some

features of the traditional finite element methods besides the advantage of a multilevel structure.
For p 2 N, we take the pth order B-spline centered at 0 or 1=2 (upon the parity of p) as the primal scaling

function /. Clearly, / is a piecewise polynomial of degree p � 1 and is Cp�2 across knots. The number of
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vanishing moments ~pp of w is set as a free parameter so that a family of corresponding wavelets can be

constructed. Then the duals ~// and ~ww follow [5]. The dual wavelet ~ww has p vanishing moments. The regu-

larity of ~// and ~ww increase with ~pp, even though an accurate measurement is not so obvious. These four
functions are denoted together as Biorðp; ~ppÞ.

For p ¼ 2 and ~pp ¼ 4, the primal scaling function and wavelet are piecewise linear functions, whereas the

primal scaling function and wavelet of Biorð4; 4Þ are cubic splines. Their graphs are plotted below and will

be used in our numerical experiments.

As we shall see in the following section, the application of the Lagrangian coordinates in an Eulerian–

Lagrangian scheme requires evaluation of the trial functions at the foot of a backtracking characteristic,

which could be any point. So trial functions similar to splines having explicit expressions are very attractive.

3.4. Multivariate biorthogonal spline wavelets

Multivariate biorthogonal spline (or general) wavelets can be constructed through tensor products. For

ease of exposure, we start from one group of biorthogonal spline wavelets /;w; ~//; ~ww and their associated

MRA hVjij2Z and h ~VVjij2Z. This is also enough for most applications.

Let ÊE :¼ f0; 1gd :¼ fe ¼ ðe1; . . . ; edÞjel ¼ 0; 1g be the set of vertices of the d-dimensional unit cube and

E :¼ ÊE n f0g. Let x ¼ ðx1; . . . ; xdÞ 2 Rd , j 2 Z, and k ¼ ðk1; . . . ; kdÞ 2 Zd . Then we define

UðxÞ :¼
Yd
l¼1

/ðxlÞ; ~UUðxÞ :¼
Yd
l¼1

~//ðxlÞ; ð35Þ
WeðxÞ :¼
Yd
l¼1

ð/ðxlÞÞ1�elðwðxlÞÞel ; ð36Þ
~WWeðxÞ :¼
Yd
l¼1

ð ~//ðxlÞÞ1�elð ~wwðxlÞÞel ; e ¼ ðe1; . . . ; edÞ 2 E: ð37Þ

Furthermore, for j 2 Z, we define

Vj :¼ 	
d

l¼1
Vj; ~VVj :¼ 	

d

l¼1

~VVj ð38Þ

as the closed linear span in L2ðRdÞ of all functions of the form f 1ðx1Þ � � � f dðxdÞ where f l 2 Vj or ~VVj, re-
spectively, for all l ¼ 1; . . . ; d.

It can be verified that hVjij2Z and h~VVjij2Z form two MRA in L2ðRdÞ. Therefore fUj;k : k 2 Zdg and

f~UUj;k : k 2 Zdg are Riesz bases of Vj and ~VVj, respectively, where

Uj;kðxÞ :¼ 2jd=2Uð2jx� kÞ; j 2 Z; k 2 Zd ð39Þ

and ~UUj;kðxÞ is understood similarly.
4. Biorthogonal spline schemes

By choosing primal scaling functions/wavelets as trial functions and dual scalings/wavelets as test

functions, we can extend all orthogonal schemes developed in [22] to the biorthogonal case. This is similar

to the ideas in the Petrov–Galerkin finite element method. The trial functions and test functions are dif-

ferent, but they span two spaces of the same dimension and still produce a well-defined discrete algebraic
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system. However we shall restrict ourselves to biorthogonal spline wavelets, even though almost every thing

holds for more general biorthogonal wavelets.

Let UðxÞ;WðxÞ; ~UUðxÞ; ~WWðxÞ be the multivariate biorthogonal splines. Let Jc < Jf be the chosen coarsest
and finest spatial resolution levels. For all j with Jc 6 j6 Jf , we define

Kj ¼ fk : suppUj;k \ X 6¼ ;g; ð40Þ
Kj;e ¼ fk : suppWe
j;k \ X 6¼ ;g; ð41Þ
PjðXÞ ¼ SpanfUj;kðxÞ : k 2 Kjg; ð42Þ
~PPjðXÞ ¼ Spanf~UUj;kðxÞ : k 2 Kjg: ð43Þ

4.1. Scheme I: A single level scheme

Find Uðx; tnÞ 2 PJf ðXÞ with

Uðx; tnÞ ¼
X
k2KJf

cnJf ;kUJf ;kðxÞ ð44Þ

such that for any test function wðx; tnÞ ¼ ~UUJf ;kðxÞ 2 ~PPJf ðXÞ the following holdsZ
X
Uðx; tnÞwðx; tnÞdx ¼

Z
X
Uðx; tn�1Þw x; tþn�1

� �
dxþ

Z
X
Gðx; tnÞf ðx; tnÞwðx; tnÞdx:

The biorthogonality of scaling functions immediately implies that this is an explicit scheme and the

coefficients are computed by (see Figs. 1 and 2)

cnJf ;k ¼
Z
X
Uðx; tn�1Þw x; tþn�1

� �
dxþ

Z
X
Gðx; tnÞf ðx; tnÞ~UUJf ;kðxÞdx: ð45Þ
4.2. Scheme II: a multilevel scheme

Find Uðx; tnÞ 2 PJf ðXÞ with

Uðx; tnÞ ¼
X
k2KJc

cnJc ;kUJc ;kðxÞ þ
XJf�1

j¼Jc

X
k2Kj;e

dn;e
j;kW

e
j;kðxÞ ð46Þ

such that the reference equation holds for any test function wðx; tnÞ 2 ~PPJf ðXÞ.
Scheme II is also an explicit scheme. We choose wðx; tnÞ ¼ ~UUJc;kðxÞ or ~WWe

j;kðxÞ respectively, then the

biorthogonality again gives

cnJc;k ¼
Z
X
Uðx; tn�1Þw x; tþn�1

� �
dxþ

Z
X
Gðx; tnÞf ðx; tnÞ~UUJc;kðxÞdx; ð47Þ
dn;e
j;k ¼

Z
X
Uðx; tn�1Þw x; tþn�1

� �
dxþ

Z
X
Gðx; tnÞf ðx; tnÞ ~WWe

j;kðxÞdx; ð48Þ
Jc 6 j6 Jf � 1:
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In Scheme II, the first part on the right side of Eq. (46) provides a basic approximation. As more finer

terms in the second part come in, we obtain better approximations.

Theoretically, Scheme II is equivalent to Scheme I. But the wavelets used in Scheme II have the ability to
localize singularities in the solution and the multilevel structure provides flexibility.

It is known in Fourier analysis that if a function is smooth then its Fourier coefficients decay rapidly. The

same can be said about the biorthogonal wavelet coefficients of a function at its smooth parts. In applica-

tions, advection dominated transport equations often admit solutions with steep fronts within small regions

but smooth outside these regions. While the decay properties of Fourier coefficients could be contaminated

globally by local singularities of the function, biorthogonal wavelets can isolate these local singularities very

well. So we are motivated to keep the terms in the wavelet expansion with noticeable coefficients that cor-



Fig. 2. Biorthogonal spline scaling functions and wavelets Biorð4; 4Þ.
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respond to the rough regions of the solution and to drop the terms with small coefficients that correspond to

the smooth regions of the solution. Therefore, the number of unknowns to be solved will be reduced. In other

words, we can develop a multilevel scheme with adaptive compression, which consists of 4 steps.

4.3. Scheme III: a multilevel scheme with adaptive compression

Step 1: Initialization. Project the initial data u0ðxÞ into PJf ðXÞ to obtain its approximation

Uðx; t0Þ ¼
X
k2KJc

c0Jc ;kUJc ;kðxÞ þ
XJf�1

j¼Jc

X
e2E

X
k2Kj;e

d0;e
j;kW

e
j;kðxÞ ð49Þ
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with coefficients given by

c0Jc;k ¼
Z
X
u0ðxÞ~UUJc ;kðxÞdx; k 2 KJc ; ð50Þ
d0;e
j;k ¼

Z
X
u0ðxÞ ~WWe

j;kðxÞdx; k 2 Kj;e; e 2 E; Jc 6 j6 Jf � 1: ð51Þ

Step 2: Compression. At each time step tn; n ¼ 0; 1; . . . ;N , compress wavelet coefficients in the approx-

imation

ÛUðx; tnÞ ¼
X
k2KJc

cnJc ;kUJc ;kðxÞ þ
XJf�1

j¼Jc

X
e2E

X
k2cKn

j;eKn
j;e

dn;e
j;kW

e
j;kðxÞ; ð52Þ

where dKn
j;eKn
j;e is the predicted significant coefficient index set with dK0

j;eK0
j;e :¼ Kj;e and dKn

j;eKn
j;e ðn ¼ 1; . . . ;NÞ to be

defined later.

First, we choose a threshold e and define level-dependent thresholds by

ej :¼ e 2�ðj�JcÞd=2Dt½ku0kL2ðXÞ þ kf kL2ð½0;T ��XÞ�: ð53Þ

Then, we carry out the following thresholding process

dn;e
j;k :¼ dn;e

j;k if dn;e
j;k

��� ���P ej;

0 otherwise:

(
ð54Þ

Next, we introduce the significant coefficient index sets

Kn
j;e :¼ k 2 dKn

j;eKn
j;e : dn;e

j;k

��� ���n
P ej

o
: ð55Þ

Finally, a compression Uðx; tnÞ of ÛUðx; tnÞ is defined by

Uðx; tnÞ ¼
X
k2KJc

cnJc ;kUJc ;kðxÞ þ
XJf�1

j¼Jc

X
e2E

X
k2Kn

j;e

dn;e
j;kW

e
j;kðxÞ: ð56Þ

Step 3: Prediction. In the above expansion, the scaling coefficients describe the size (scale) of the solution,

while the biorthogonal wavelet coefficients depict the smoothness/roughness of the solution. The significant

coefficient index sets Kn�1
j;e indicate the smooth and rough regions of the solution ÛUðx; tn�1Þ. Then we track

Kn�1
j;e forward along characteristics from time tn�1 to time tn to obtain the predicted significant coefficient

index sets dKn
j;eKn
j;e .

Step 4: Solution. Once the predicted significant coefficient index sets dKn
j;eKn
j;e are determined, we define

adaptive trial function subspace dPJf ðXÞPJf ðXÞ � PJf ðXÞ and adaptive test function subspace d~PPJf ðXÞ~PPJf ðXÞ � ~PPJf ðXÞ,
respectively by

dPJf ðXÞPJf ðXÞ :¼ Span fUJc;kgk2Kn
Jc
; We

j;k

n o
k2cKn

j;eKn
j;e ;e2E;Jc 6 j6 Jf�1

� �
; ð57Þ
d~PPJf ðXÞ~PPJf ðXÞ :¼ Span f~UUJc;kgk2Kn
Jc
; ~WWe

j;k

n o
k2cKn

j;eKn
j;e ;e2E;Jc 6 j6 Jf�1

� �
: ð58Þ
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Now we seek ÛUðx; tnÞ 2 dPJf ðXÞPJf ðXÞ with

ÛUðx; tnÞ ¼
X
k2KJc

cnJc ;kUJc ;kðxÞ þ
XJf�1

j¼Jc

X
e2E

X
k2cKn

j;eKn
j;e

dn;e
j;kW

e
j;kðxÞ ð59Þ

such that for any wðx; tnÞ 2 d~PPJf ðXÞ~PPJf ðXÞ the following holdsZ
X
ÛUðx; tnÞwðx; tnÞdx ¼

Z
X
Uðx; tn�1Þwðx; tþn�1Þdxþ

Z
X
Gðx; tnÞf ðx; tnÞwðx; tnÞdx: ð60Þ
Remark 1. The first part on the right side of (59) provides a basic approximation. The significant coeffi-
cients are nonzero only near the moving steep fronts, so the second part of the right side of (59) brings in

progressive improvements in approximation. In this way, Scheme III resolves the moving steep fronts

present in the solution accurately, adaptively, and efficiently.

Remark 2. We know that Uðx; �Þ represents concentration, so its integral is mass. The fact that the integral

of a biorthogonal wavelet is zero guarantees that the compression performed in Scheme III preserves the

total mass.

Remark 3. All three biorthogonal spline schemes are developed within the ELLAM framework, so they are

not subject to the CFL restriction [7].
5. Numerical experiments

In this section, we present 1- (1D) and 2-dimensional (2D) numerical experiments on the biorthogonal

spline wavelet schemes. We shall also observe their convergence rates and make brief comparison between

solutions of biorthogonal wavelet schemes, orthogonal wavelet schemes proposed in [22], and traditional

finite element methods.

5.1. Example 1: 1D sharp fronts

This is a linear advection problem with velocity field V ðx; tÞ ¼ 1þ cx, source term f ðx; tÞ ¼ 0, and initial

condition

u0ðxÞ ¼ erf
x� a
r

� 	
� erf

x� b
r


 �
; ð61Þ

where erfðxÞ ¼
R x
�1 e�y2=2 dy. The exact solution is given by uðx; tÞ ¼ u0ðnÞe�ct, where n ¼ ½ð1þ cxÞ

e�ct � 1�=c is obtained by backtracking characteristic from ðx; tÞ to ðn; 0Þ. Note that the initial solution has

two sharp fronts located at x ¼ a and x ¼ b, respectively. We expect the solution uðx; tÞ at any time keeps

these two sharp fronts.

In our numerical experiments, parameters are chosen as follows: a ¼ 0:25, b ¼ 0:65, r ¼ 0:04, and

c ¼ 0:1. For characteristic tracking, the second-order Runge–Kutta method is used.
Table 1 lists some numerical results of the three biorthogonal schemes with spline wavelets Biorð4; 4Þ and

different spatial resolutions and time steps. Trial functions are piecewise cubic polynomials. All three

schemes generate very accurate numerical solutions even though large time steps and coarse spatial grids

are used.



Table 1

Statistics of 1D schemes with Biorð4; 4Þ

Dt Jc Jf Threshold e Max. L1 error L2 error L1 error Compr. ratio

Exact solution 0.9048 N/A

0.1 7 7 N/A 0.9044 4.857E) 4 2.995E) 4 2.060E) 4 N/A

0.2 7 7 N/A 0.9039 1.419E) 3 6.590E) 4 4.652E) 4 N/A

0.2 6 6 N/A 0.9039 1.502E) 3 6.692E) 4 4.774E) 4 N/A

0.2 3 6 0 0.9040 2.337E) 3 7.993E) 4 5.807E) 4 N/A

0.2 3 6 1E) 3 0.9042 2.338E) 3 8.050E) 4 5.886E) 4 2.4

0.2 3 6 1E) 2 0.9055 4.587E) 3 1.502E) 3 9.845E) 4 3.1

0.2 3 6 5E) 2 0.9171 2.023E) 2 6.095E) 3 4.253E) 3 4.0

0.2 3 6 1E) 1 0.9300 6.833E) 2 2.105E) 2 1.516E) 2 4.8
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The first 3 rows are results of Scheme I. They indicate that we have to refine both time step and spatial

resolution in order to obtain better approximation. In some sense, Scheme I is equivalent to the traditional

finite element method without local refinement.
As we know, Scheme II is a multilevel scheme and theoretically equivalent to the single level Scheme I.

Numerically, there exist slight differences in their results. Of course, more interesting is the multilevel

scheme with compression, i.e., Scheme III.

Generally speaking, the compression ratio of Scheme III increases as the threshold increases. We solve

less unknowns and hence the scheme is more efficient. Meanwhile, the approximation deteriorates, as

shown in the last 4 rows of Table 1. The best compression is no-compression, i.e., Scheme III with

threshold 0, which is exactly Scheme II. The worst compression (a large threshold) will throw away all

wavelet coefficients and give the result of Scheme I with the coarsest level. A good choice of the threshold
in Scheme III, in other words, a quantitative description of trade-off between efficiency and accuracy

related to compression, is a delicate issue of nonlinear approximation, and will be addressed in our future

work.

For this particular problem, we have ku0kL2ðXÞ þ kf kL2ð½0;T ��XÞ ¼ 0:4. Given e ¼ 0:01 as the threshold,

Scheme III has compression ratio 3:1. This means we solve less than one-third of the original unknowns but

still obtain very good approximation. Plots of uncompressed and compressed solutions with Jc ¼ 3; Jf ¼ 6

are shown in Fig. 3.

Next we conduct numerical experiments to observe the convergence rates in time and space. Our guess is
that

kUðx; T Þ � uðx; T ÞkLpðXÞ 6MaðDtÞa þMbhb; p ¼ 1; 2; ð62Þ

where a ¼ 1 and b ¼ 2. We shall use linear regression to fit the constants in Eq. (62). First, we fix a small

spatial step h and compute the constants a and Ma with respect to Dt. To measure the convergence rate in

space, we choose different spatial steps h and time steps Dt ¼ Ch2 accordingly (for some fixed constant C).
Tables 2 and 3 verify that our biorthogonal spline scheme possesses first-order accuracy in time and second-

order accuracy in space. Notice that in the numerical experiments, Ma is much smaller thanMb. This reflects

the fact that the solutions of advection–reaction equations are smoother along characteristics, and justifies

the use of Lagrangian coordinates in the ELLAM methods. This also explains why we can still obtain very
accurate numerical solutions even if large time steps are used, see Table 1.

5.2. Example 2: A 2D Gaussian pulse

In this example, the velocity field is posed as V1ðx; y; tÞ ¼ �4y, V2ðx; y; tÞ ¼ 4x, the reaction coefficient

R ¼ cosð2tÞ, and the initial condition is given by



Table 2

Convergence rate in time, test for a and Ma

Dt h L2 error L1 error

1/16 1/256 1.83518E) 4 1.26433E) 4

1/20 1/256 1.45988E) 4 1.00712E) 4

1/32 1/256 9.06279E) 5 6.27438E) 5

1/40 1/256 7.23697E) 5 5.01644E) 5

a ¼ 1:02, Ma ¼ 0:0031 a ¼ 1:01, Ma ¼ 0:0021

Table 3

Convergence rate in space, test for b and Mb

h Dt L2 error L1 error

1/64 1/5 6.69230E) 4 4.77369E) 4

1/128 1/20 1.45592E) 4 1.02097E) 4

1/256 1/80 3.60662E) 5 2.50861E) 5

1/512 1/320 9.01823E) 6 6.25288E) 6

b ¼ 2:07, Mb ¼ 3:4506 b ¼ 2:08, Mb ¼ 2:5937
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Fig. 3. 1D biorthogonal solutions with Biorð4; 4Þ and Dt ¼ 0:2: (a) Jc ¼ Jf ¼ 6; (b) compressed Jc ¼ 3; Jf ¼ 6; e ¼ 0:01.
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u0ðx; yÞ ¼ exp

 
� ðx� xcÞ2 þ ðy � ycÞ2

2r2

!
; ð63Þ

where ðxc; ycÞ and r are the center and standard deviation, respectively. If no source/sink is present, i.e.,
f ðx; y; tÞ 
 0, then the analytical solution is given by
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uðx; y; tÞ ¼ exp

 
� 1

2
sinð2tÞ � ðx� � xcÞ2 þ ðy� � ycÞ2

2r2

!
; ð64Þ

where ðx�; y�Þ is the backtracking image of ðx; yÞ along characteristic from time t to time 0, that is,

x� ¼ ðcos 4tÞxþ ðsin 4tÞy; y� ¼ �ðsin 4tÞxþ ðcos 4tÞy. The time interval is chosen as ½0; T � ¼ ½0; p=2�, which
is needed for one complete rotation. So the solution at the final time T ¼ p=2 is identical to the initial

condition, which has a maximum value 1 and a minimum value 0. In our numerical experiments, the spatial

domain X ¼ ½�0:5; 0:5� � ½�0:5; 0:5�, the center and the deviation of the initial Gaussian are specified as
ðxc; ycÞ ¼ ð�0:25; 0:0Þ and r ¼ 0:0447.

This example has been widely used to evaluate performance of different numerical schemes, such as

numerical stability, numerical dispersion, spurious oscillations, deformation, and phase errors as well as

other numerical effects arising in porous media fluid flows.

This example was also studied in [20] by using piecewise bilinear finite elements within ELLAM

framework. With spatial mesh size h ¼ 1=64 and time step Dt ¼ p=8, a maximum value of 0:9987 was
Table 4

Statistics of 2D biorthogonal spline Biorð2; 4Þ solutions with Dt ¼ p=8

Jc Jf Threshold e Compr. ratio Max. L1 error L2 error L1 error

Exact solution 1 N/A

7 7 N/A N/A 1.0050 6.694E) 3 3.647E) 4 4.641E) 5

6 6 N/A N/A 1.0202 2.015E) 2 9.071E) 4 1.110E) 4

3 6 0 N/A 0.9938 1.641E) 2 8.366E) 4 1.190E) 4

3 6 1E) 4 12.9 0.9938 1.618E) 2 8.522E) 4 1.378E) 4

3 6 5E) 4 20.1 0.9882 1.789E) 2 1.056E) 3 2.006E) 4

3 6 1E) 3 22.3 0.9882 1.905E) 2 1.252E) 3 2.551E) 4

3 6 1E) 2 34.8 1.0625 8.366E) 2 5.593E) 3 9.774E) 4
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Fig. 4. 2D exact solution at T ¼ p=2: (a) surface plot; (b) contour interval 0.2.
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Fig. 5. 2D biorthogonal spline solution at T ¼ p=2 with threshold 0.0001: (a) surface plot; (b) contour interval 0.2.
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obtained for the numerical solution. Here we use the same spatial mesh size ( Jf ¼ 6 means h ¼ 1=64 ) and

the same time step. With compression threshold e ¼ 0:0001, the biorthogonal spline scheme III generates a

numerical solution having maximum value 0.9938. The accuracy of the biorthogonal spline solution is

comparable to that of the piecewise bilinear finite element solution, but the compression ratio of the bi-

orthogonal method is as high as 12.9, which means we solve less than a twelfth of the unknowns (see Table
4 and Figs. 4 and 5).

Next we make comparison between the biorthogonal schemes in this paper and the orthogonal schemes

proposed in [22]. We take Biorð2; 4Þ for the biorthogonal schemes and the third-order Daubechies wavelet

for the orthogonal ones. This should be a fair comparison, since Biorð2; 4Þ primal and dual biorthogonal

wavelets and the third-order Daubechies orthogonal wavelet all have the same compact support ½�2; 3�.
Thus the same amount of operations is needed for each element in both orthogonal and biorthogonal

schemes. From Table 5, we conclude that the biorthogonal schemes perform somewhat better than the
Table 5

Comparison of Biorð2; 4Þ biorthogonal and third-order Daubechies orthogonal schemes for the 2D problem with Dt ¼ p=8

Jc Jf Threshold e Compr. ratio Max. L1 error L2 error L1 error

Biorð2; 4Þ primals as trial functions, duals as test functions

3 6 0 N/A 0.9938 1.641E) 2 8.366E) 4 1.190E) 4

3 6 1E) 4 12.9 0.9938 1.618E) 2 8.522E) 4 1.378E) 4

3 6 1E) 3 22.3 0.9882 1.905E) 2 1.252E) 3 2.551E) 4

3 6 5E) 3 32.7 0.9923 5.956E) 2 3.535E) 3 6.231E) 4

3 6 1E) 2 34.8 1.0625 8.366E) 2 5.593E) 3 9.774E) 4

Third-order Daubechies orthogonal wavelets as both trial and test functions

3 6 0 N/A 0.9919 1.635E) 2 9.929E) 4 1.465E) 4

3 6 1E) 4 10.6 0.9895 1.517E) 2 1.004E) 3 1.659E) 4

3 6 1E) 3 17.2 0.9877 2.994E) 2 1.960E) 3 4.047E) 4

3 6 5E) 3 22.7 1.0275 1.106E) 1 6.203E) 3 1.248E) 3

3 6 1E) 2 24.7 0.8980 1.921E) 1 1.312E) 2 2.552E) 3
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orthogonal ones, as we expected. For the no-compression multilevel scheme or the compression scheme

with small threshold, they both perform very well. But with relatively large thresholds, e.g.,

e ¼ 0:001; 0:005, the biorthogonal scheme produces better approximations with even higher compression
ratios. Notice that primal biorthogonal wavelets and scaling functions have explicit expressions, for in-

stance, Biorð2; 4Þ primals are just piecewise linear functions. Therefore they are relatively easier to be

implemented in programs and therefore take less time in computations.
6. Discussions and summary

First, notice that at each time step, we approximate the solution by a spline. For the initial condition
u0ðxÞ, this is equivalent to the nodal interpolation. So it is not necessary to call numerical quadrature to

compute the coefficients in the linear combination. This should bring us better approximation to u0ðxÞ and
hence better approximation for the whole solution.

The evaluation of the first term on the right-hand side of (45), (47), or (48) is nonconventional due to the

definition of wðx; tþn�1Þ, which is obtained via characteristic tracking. To overcome this difficulty, we adopt a

backward tracking algorithm. Replacing the dummy variable x by x�, we rewrite the term asZ
X
Uðx�; tn�1Þw x�; tþn�1

� �
dx� ¼

Z
X
Uðx�; tn�1Þwðx; tnÞe�Rðx;tnÞDtnJðx�; xÞdx; ð65Þ

where x� ¼ yðtn�1; x; tnÞ is obtained by backtracking ðx; tnÞ along characteristic to time tn�1 and J is the

Jacobian. Note that wðx; tnÞ ¼ ~UUJf ðxÞ; ~UUJcðxÞ, or ~WWe
j;kðxÞ, whose values are available only at dyadic points.

Therefore, we apply a composite Simpson or a composite 3rd/5th order Newton–Cotes quadrature on

dyadic cells in X at time step tn. All discrete quadrature points xq will be dyadic points. Of course,

ðxqÞ� ¼ yðtn�1; xq; tnÞ are not necessarily dyadic points. But UððxqÞ�; tn�1Þ can be evaluated explicitly since

trial functions are piecewise polynomials (splines). This is also one of the advantages of the biorthogonal

spline schemes to the orthogonal wavelet schemes.
The distribution of significant coefficients in (59) might be somewhat irregular after the thresholding

process. A naive organization and management of these coefficients could compromise the greatly im-

proved efficiency of the scheme. The tree approximation techniques proposed in [3] give a more efficient

organization of the positions of the significant coefficients.

At present stage, we focus on the study of trade-off between compressibility and accuracy. We under-

stand that some optimization of the implementation will fully explore the adaptivity and further improve its

performance in CPU time and approximation.

Our numerical results indicate that all three biorthogonal spline schemes are unconditionally stable.
Rigorous proofs for these will be presented in our future work.

For initial boundary value problems to advection–reaction equations, biorthogonal spline schemes can

also be established by using biorthogonal wavelets on intervals. With the help of ELLAM methodology, we

can extend these ideas further to advection-diffusion equations.

In this paper, we present an adaptive biorthogonal spline wavelet ELLAM scheme for multidimensional

advection–reaction equations, by incorporating biorthogonal spline wavelet trial and test functions into the

framework of the Eulerian–Lagrangian localized adjoint method. The use of the ELLAM framework

symmetrizes the governing equation. The symmetric representation of the equation is then solved using
MRA and wavelet expansion of trial- and test-spaces. The combination of the ELLAM framework and the

biorthogonal wavelets generates unconditionally stable, explicit, adaptive wavelet schemes. The novelty of

this work lies in the thresholding schemes used to adaptively reduce the numerical complexity in analogy

with wavelet compression of data. Inherent in the scheme is shock-tracking and the packing of the wavelet

elements around the feature-detected shocks, followed by the automatic use of coarse elements over smooth
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regions and fine wavelet corrections near moving steep fronts. The use of biorthogonal spline wavelets in this

paper, rather than the orthogonal scaling functions as proposed in [22], enables us to have explicit repre-

sentations with a given regularity and to greatly improve the efficiency of the adaptive wavelet schemes.
This class of numerical schemes is promising since it couples the strengths of ELLAM schemes with basis

elements that are able to efficiently approximate the solutions in a multiscale framework. In the future we

plan to investigate the development of multiresolution lifting schemes for nonuniform (nonlogically rect-

angular) grids, efficient balance of solution projections into scale and wavelet spaces, efficient treatment of

boundary terms, efficient implementation, as well as numerical analysis issues such as stability analysis,

convergence analysis, and error estimates.
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